Curiosidades

Hans, el caballo más listo

A veces, estudiar el comportamiento animal puede ser una tarea difícil, ya que los humanos tenemos tendencia a atribuir características humanas (o características que se supone que pertenecen solo a los humanos) a los animales y a los seres no vivos. Este “fallo” se conoce como antropomorfismo. Esto es especialmente prevalente sobre todo a la hora de atribuir emociones humanas y sentimientos a los animales.

El investigador del comportamiento animal debe ser consciente de esto y tener mucho cuidado de no interpretar automáticamente el comportamiento animal en términos de nuestras experiencias humanas, ya que el antropomorfismo puede dar lugar a hipótesis incorrectas o difíciles de probar y puede llevar a conclusiones erróneas.

Un buen ejemplo es el de Clever Hans.

El inteligente Hans era un caballo, que junto con su propietario, el profesor de matemáticas alemán Wilhelm von Osten, realizó una gira por Alemania entre 1902 y 1908 mostrando la asombrosa habilidad matemática que tenía su caballo.

Por ejemplo, von Osten preguntaba cuál era la suma de 3 + 5 y Clever Hans levantaba su pezuña chocándola contra el suelo un total de 8 veces. Su espectáculo se hizo bastante famoso y en 1907 la junta de educación alemana decidió investigar este fenómeno. El encargado de tal investigación fue el biólogo y psicólogo Oscar Pfungst. El investigador aplicó el método científico para intenta explicar los resultdos de Clever Hans.

Primero, planteó la hipótesis de que podría ser un fraude deliberado con algún tipo de señal de su dueño (von Osten). Sin embargo, el caballo podía seguir respondiendo correctamente, incluso si su cuidador no estaba delante, así que esta hipótesis fue desechada.

Von Osten realmente creía que su caballo podía contar y realizar aritmética simple. Sin embargo,Pfung, al observar el caballo y ver cómo interactuaba con von Osten, descubrió que von Osten, al aproximarse la respuesta correcta, se tensaba ligeramente, y después de que el caballo hubiese chocado la pezuña el número exacto de veces, se relajaba. Entonces se planteó la hipótesis de que Clever Hans estaba captando pequeños gestos visuales (involuntarios) de su dueño. Debido a esto, cuando el caballo tenía los ojos vendados o el interrogador no sabía la respuesta, Clever Hans ya no era capaz de responder correctamente. Por ejemplo, cuando Von Osten sabía la respuesta a las preguntas, el caballo obtenía un 89% de respuestas correctas, mientras que cuando Von Osten no sabía las respuestas, el caballo solo acertaba un 6%.

En etología, esto se conoce como el efecto Clever Hans, y demuestra cuán cuidadoso debe de ser un investigador a la hora de estudiar a los animales, ya que sin quererlo, puede mandar señales que modifiquen su comportamiento.

 

Anuncios
Curiosidades, Naturaleza y Biología

El debate de la aleta dorsal en orcas

Quizá ya hayáis visto el documental “Blackfish” (ahora en Netflix) sobre las orcas en cautividad, pero si no es así, es posible que no os suene el debate sobre el colapso, es decir, la caída hacia un lado, de la aleta dorsal.

Contrariamente a la creencia popular, el colapso de las aletas no solo afecta a las ballenas cautivas.

Aunque la literatura sobre este tema es escasa, hay estudios publicados sobre el colapso de la aleta dorsal también en ballenas en libertad.

Aunque durante mucho tiempo se ha creído que sólo afecta a los individuos cautivos, se ha visto que esto no es así. El fenómeno sí es más común en cautiverio, pero también se han documentado casos de orcas en libertad con la misma característica. Por lo tanto, la causa no puede ser el cautiverio solo.

Ingrid N. Visser publicó un estudio, documentando que el 23 % de los machos adultos de la población de orcas estudiadas en aguas de Nueva Zelanda presentaba esta característica. La explicación es poco clara, argumentando que es “simplemente una característica común en la población de orcas estudiadas”.

Otros estudios atribuyen el colapso de la aleta dorsal a la edad del individuo, ya que con la edad la aleta dorsal va perdiendo fuerza y estabilidad, llegando a colapsar total o parcialmente (Bigg, 1982).

Las últimas explicaciones parece que tratan de argumentar que en última instancia, lo que sucede es que el colágeno en la aleta dorsal se descompone. Una razón por la que esto puede suceder es por la temperatura. Las temperaturas más cálidas pueden alterar la estructura y la rigidez del colágeno. Lo que podría explicar por qué las ballenas cautivas tienen aletas curvas, al nadar más tiempo sobre la superficie, estando más expuestas a la luz del sol, es decir, a temperaturas, en muchos casos, más cálidas.

Si bien la temperatura es una teoría líder, algunos expertos piensan que la velocidad también podría ser un factor. En la naturaleza, las orcas nadan en promedio de 3 a 4 mph y pueden correr a velocidades de hasta 34 mph. A esas velocidades, el agua crea una fuerza considerable contra la aleta, que podría mantener la aleta fuerte y vertical. Las ballenas cautivas no tienen suficiente espacio para alcanzar estas velocidades.

En última instancia, la aleta dorsal curvada sigue siendo un misterio.

Naturaleza y Biología

La primavera y el campo

A quien le guste el campo y el monte está de suerte, porque la primavera es una de las estaciones más idoneas para disfrutar de la Naturaleza. Los días son largos y los fines de semana apetece salir a pasear por el campo, y desconectar de la ciudad.

Desgraciadamente (en algunos casos), no somos los únicos seres vivos a los que nos gusta disfrutar del campo; quizá alguno ya conozca a nuestro invitado de hoy, la garrapata.

Los ixodoideos (Ixodoidea) son una superfamilia de ácaros, conocidos vulgarmente como garrapatas. Son ectoparásitos hematófagos, es decir, que se alimentan de sangre, y son vectores de numerosas enfermedades infecciosas entre las que destaca la enfermedad de Lyme. Son los ácaros de mayor tamaño.

Este post no es para asustar a nadie, pero es para dar a conocer una de las enfermedades que pueden transmitir estos pequeños animales.

 

Sigue leyendo “La primavera y el campo”

Naturaleza y Biología

Viscum album

Quizás os suene este nombre, pero supongo que a la mayoría no os dirá nada. Es el nombre científico de la planta comunmente llamada muérdago, y que podemos ver creciendo en las ramas de otros árboles.

Esta Navidad estaba viajando por la autopista, y una vez más me llamó la atención el muérdago. Se caracteriza porque son como unas bolas de hojas que crecen en las ramas de otros árboles.

Sigue leyendo “Viscum album”

Naturaleza y Biología

NO JUEGUES CON FUEGO

Lo que se pierde en un incendio es incalculable.

Las imágenes de la semana pasada que nos llegaban desde Asturias, Galicia y Portugal hacían pensar lo peor. No sólo se han perdido vidas humanas, sino que los ecosistemas quedan destruidos.

Aunque los fuegos naturales puedan cumplir una función importante en el mantenimiento de la salud de ciertos ecosistemas, los incendios de la semana pasada, provocados, son una amenaza enorme para muchos bosques y su biodiversidad.

EFECTOS EN LOS ECOSISTEMAS A CAUSA DEL FUEGO

Los incendios forestales tienen muchas implicaciones para la diversidad biológica. A escala general son una fuente importante de carbono emitido, lo que contribuye al calentamiento global que podría conducir a más cambios en la biodiversidad. A nivel regional y local, conducen a cambios en las existencias de biomasa, alteran el ciclo hidrológico con efectos posteriores para los sistemas marinos, y afectan el funcionamiento de las especies de plantas y animales. El humo de los incendios puede reducir significativamente la actividad fotosintética y por supuesto puede ser perjudicial para la salud de humanos y animales.

Después de un incendio, las especies pirófitas, es decir, aquellas especies vegetales que tienen afinidad con el fuego, reemplazan las vastas áreas de bosque calcinado. El reemplazo de estas áreas de bosque con pastizales pirofíticos es uno de los impactos ecológicos más negativos de los incendios en los bosques. Lo que una vez fue un denso bosque de hoja perenne se convierte en un bosque empobrecido poblado por algunas especies de árboles resistentes al fuego y una cubierta de malezas de hierbas. Es decir, la biodiversidad se reduce.

El fuego puede matar prácticamente todas las plántulas, brotes, y árboles jóvenes, ya que no están protegidos por una corteza gruesa. El daño al banco de semillas, las plántulas y los retoños dificulta la recuperación de la especies originales.

EFECTOS DEL INCENDIO EN LA FAUNA FORESTAL

En bosques donde el fuego fue provocado, los impactos son  devastadores en las especies de vertebrados e invertebrados; no solo matándolos directamente, sino también causando efectos indirectos a largo plazo como estrés y pérdida de hábitat, pérdida de territorios, pérdida de refugio y falta de alimento. La merma de organismos clave en los ecosistemas forestales, como invertebrados, polinizadores y organismos encargados de la descomposición de la materia, puede ralentizar significativamente la tasa de recuperación del bosque.

Pérdida de hábitat, territorios y refugio

La destrucción de árboles con cavidades permanentes así como de troncos muertos en el suelo tiene efectos negativos en la mayoría de las especies de mamíferos pequeños (por ejemplo, musarañas, murciélagos) y en aves que anidan en cavidades.

Los incendios también pueden provocar el desplazamiento de aves y mamíferos hacia nuevos territorios, lo que puede alterar el equilibrio local de estos espacios.

Pérdida de comida

La pérdida de árboles frutales provoca una disminución general de las especies de aves y animales que dependen de las frutas como alimento principal.

Los bosques quemados se empobrecen de pequeños mamíferos, aves y reptiles, y los carnívoros tienden a evitar las áreas quemadas. La reducción de la densidad de los mamíferos pequeños, como los roedores, puede afectar negativamente el suministro de alimentos para otros carnívoros, como los zorros.

Los incendios también destruyen la hojarasca y su comunidad asociada de artrópodos, reduciendo aún más la disponibilidad de alimentos para omnívoros y carnívoros.

En resumen, una simple llama altera el equilibrio natural, y una vez más, nosotros somos los culpables.

Neurociencia

Moscas en la casa, arañas en la cara

¡Hola a tod@s, y buen inicio de curso!

Quizás algun@s sigáis de vacaciones, pero para los que no, hoy vamos a hablar de unos huéspedes muy curiosos, y también muy habituales. Más que de unos “veraneantes”, vamos a hablar de unos inquilinos, ya que estos huéspedes viven entre nosotros, y aún diré más, viven ¡con nosotros!

Hoy vamos a hablar de unas arañitas, los “demodex”, que viven en nuestra cara… ¡sí, sí!, lo habéis oído bien: en nuestra cara.
Demodex folliculorum, que así es su nombre en latín, es un ácaro minúsculo (menos de 0,4 mm) que vive en los poros y folículos del pelo de nuestra cara. Generalmente se puede encontrar en la nariz, la frente, la mejilla, la barbilla, y a menudo en las raíces de las pestañas. Tiene aspecto de lombriz (de ahí el dex, que significa gusano), y sus extremidades son meros tocones. Pero a pesar de su aspecto de lombriz, técnicamente es un ácaro.

Uno de sus descubridores fue un científico inglés llamado Richard Owen (1841).

Era la época de los primeros microscopios serios y los investigadores, valga la redundancia, empezaban a investigar el mundo microscópico.

Este ácaro vive cabeza abajo, en los folículos pilosos, alimentándose de secreciones y piel muerta. Cada hembra de Demodex puede poner hasta 25 huevos en un solo folículo. Las crías se aferran firmemente al pelo mientras crecen, y cuando está maduro, el ácaro sale del folículo y busca uno nuevo en el que poner sus huevos.Es decir, el ácaro abandona su hogar materno para buscar su propio hogar. Este ciclo suele llevar entre 14 y 18 días.

Estas pequeñas arañitas poseen unas garras minúsculas y una estructura en forma de aguja que hacen la función de boca con las que se alimenta de las células muertas de la piel. Su sistema digestivo apenas produce desechos, lo que hace que carezca de una abertura excretoria. Así que tranquilos, no “manchan” nuestra cara.

 

Son inofensivos y no transmiten enfermedades. Sin embargo, una sobrepoblación de Demodex podría causar trastornos de la piel, como la rosácea (una enfermedad de la piel, principalmente de la cara, caracterizada por enrojecimiento, infección de folículos pilosos, proliferación de vasos sanguíneos e inflamación).
Puede sonar un poco raro, pero son un inquilino más de nuestro cuerpo.

¡Feliz semana!

Naturaleza y Biología

El lado oscuro de las jirafas

¡Buenos días concienzud@s!

Hoy toca hablar sobre unos animales muy entrañables: las jirafas. Estos mamíferos artiodáctilos son fácilmente reconocibles por sus largos cuellos, andares desgarbados y sus patrones de manchas oscuras sobre su piel de color amarillento, y en especial, por ser los animales más altos del mundo. La jirafa (Giraffa camelopardalis) se localiza en un área bastante dispersa, que se extiende desde Niger hasta Somalia (oeste a este) y de Chad a Sudáfrica (norte a sur). Respecto a su hábitat, las jirafas viven en sabanas, pastizales y bosques abiertos.

 

Fuente: http://www.jirafapedia.com

Se conocen su morfología y su distribución, la rapidez con la que pueden desplazarse, o lo alto que pueden llegar o la fuerza de sus cuellos, pero sólo en los últimos años se han publicado trabajos detallando su comportamiento. Los primeros estudios sugirieron que los grupos de jirafas no estaban estructurados, pero ahora se cree que siguen una dinámica semejante a los chimpancés o las hienas. Se sabe que las jirafas hembra mantienen relaciones estrechas entre sí, según un estudio publicado recientemente en la revista Animal Behavior. Concretamente, forman vínculos estrechos con un selecto grupo de compañeras, y además evitan a otras hembras con las que se llevan “menos bien”.

Los científicos explican que los individuos se asocian temporalmente, dando como resultado tamaños de grupo fluctuantes.

El grupo de investigación, perteneciente a la Universidad de Queensland (Australia), identificó y siguió la pista a diferentes individuos, claramente diferenciables por su patrón de manchas, que los hace únicos.

Las hembras elegían a miembros de un grupo, al que se asociaban, y evitaban intencionadamente a otros miembros y grupos. Esta conducta podría deberse al uso de las mismas localizaciones para alimentarse, aunque los integrantes del grupo de investigación no descartan que las jirafas se reconozcan mutuamente de cuando eran jóvenes y vivían en grupos (al estilo de las “guarderías”), algo ampliamente descrito en el mundo animal.

Fuente: http://www.animalesenlaweb.com

Sin embargo, los machos presentan un comportamiento menos gregario y muchos deciden vagar en solitario tan pronto como alcanzan la madurez. Si hay pocas oportunidades de apareamiento, algunos estudios sugieren que las jirafas macho pueden formar “amistades” entre sí, pero por norma general, los machos se caracterizan por ser solitarios y luchadores.

Normalmente un macho más viejo es retado por un joven para demandar el apareamiento por una hembra. En primer lugar se sitúan uno junto al otro, empujándose para juzgar cuál es el más fuerte. En peleas igualadas, es normal que se intercambien golpes brutales con los cuellos, y raramente utilizan los osiconos, estructuras similares a cuernos, aunque a veces pueden ocasionar lesiones. El desenlace más común es el de un macho victorioso y uno magullado, pero puede darse que uno de los contendientes acabe muerto.

Os dejamos un escalofriante vídeo:

Esperamos que os haya gustado. ¡Buena semana concienzud@s!

 

Fuentes:

  • Carter, Jennifer M. Seddon, Celine H. Frère, John K. Carter, Anne W. Goldizen. Fission–fusion dynamics in wild giraffes may be driven by kinship, spatial overlap and individual social preferences, Animal Behaviour, Volume 85, Issue 2, 2013, Pages 385-394, ISSN 0003-3472.
  • BBC Nature.